首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61791篇
  免费   8566篇
  国内免费   5920篇
电工技术   5377篇
技术理论   6篇
综合类   6924篇
化学工业   6718篇
金属工艺   3969篇
机械仪表   5037篇
建筑科学   6181篇
矿业工程   2165篇
能源动力   3944篇
轻工业   1250篇
水利工程   2366篇
石油天然气   2899篇
武器工业   1030篇
无线电   5515篇
一般工业技术   7880篇
冶金工业   1612篇
原子能技术   403篇
自动化技术   13001篇
  2024年   146篇
  2023年   1543篇
  2022年   2349篇
  2021年   2588篇
  2020年   2753篇
  2019年   2350篇
  2018年   2220篇
  2017年   2536篇
  2016年   2671篇
  2015年   2751篇
  2014年   3753篇
  2013年   3869篇
  2012年   4595篇
  2011年   4946篇
  2010年   3720篇
  2009年   3775篇
  2008年   3663篇
  2007年   4172篇
  2006年   3587篇
  2005年   3019篇
  2004年   2451篇
  2003年   2102篇
  2002年   1753篇
  2001年   1479篇
  2000年   1325篇
  1999年   1069篇
  1998年   873篇
  1997年   749篇
  1996年   633篇
  1995年   567篇
  1994年   489篇
  1993年   351篇
  1992年   292篇
  1991年   239篇
  1990年   192篇
  1989年   183篇
  1988年   140篇
  1987年   70篇
  1986年   65篇
  1985年   44篇
  1984年   39篇
  1983年   30篇
  1982年   25篇
  1981年   20篇
  1980年   25篇
  1979年   24篇
  1978年   5篇
  1977年   5篇
  1959年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Water electrolysis is an efficient approach for high-purity hydrogen production. However, the anodic sluggish oxygen evolution reaction (OER) always needs high overpotential and thus brings about superfluous electricity cost of water electrolysis. Therefore, exploiting highly efficient OER electrocatalysts with small overpotential especially at high current density will undoubtedly boost the development of industrial water electrolysis. Herein, we used a simple hydrothermal method to prepare a novel FeOOH–CoS nanocomposite on nickel foam (NF). The as-prepared FeOOH–CoS/NF catalyst displays an excellent OER performance with extremely low overpotentials of 306 and 329 mV at 500 and 1000 mA cm−2 in 1.0 M KOH, respectively. In addition, the FeOOH–CoS/NF catalyst can maintain excellent catalytic stability for more than 50 h, and the OER catalytic activity shows almost no attenuation no matter after 1000 repeated CV cycles or 50 h of stability test. The high catalytic activity and stability have exceeded most non-noble metal electrocatalysts reported in literature, which makes the FeOOH–CoS/NF composite catalyst have promising applications in the industrial water electrolysis.  相似文献   
82.
Abnormal permeation behavior of hydrogen through niobium has been investigated in this paper, i.e. the permeation flux saturated with long-term decrease after reaching a maximum. The diffusivity and permeability have been deduced from the decay edge of permeation transient. Three kinds of polycrystalline niobium foils with different annealing temperature have been compared, to verify the effect of defects and grain properties on the permeability and diffusivity. In the temperature range of (773–1023) K, the heat treatment along with the permeation cycles could either reduce or increase the permeability and diffusivity depending sensitively on temperature and showing a temperature threshold around 950 K. The permeation flux is proportional to square root of pressure, revealing that the abnormal permeation was still bulk diffusion-limited. The diffusivity gradually decreased with permeation cycles, and became more and more sensitive to pressure. The niobium foil expanded macroscopically along the gradient of hydrogen concentration, which reveals the strong and unrecoverable lattice distortion in this temperature and pressure range. The X-ray diffraction studies showed that splitting of all the Nb peaks and shifting of Nb-D peaks along with hydrogen loadings. The phase transition was expected to eliminate the lattice strain during hydrogen loading and which in turn acted as a diffusion barrier.  相似文献   
83.
Manganese oxides of different crystalline structures: α-MnO2, δ-MnO2, α,γ-MnO2 and Mn2O3; were treated with the organic compounds picolinic acid, ethylenediamine and pyridine; and were applied as catalysts in the chemical water oxidation reaction using Ce(IV) ammonium nitrate as sacrificial oxidant. The treatment led to modifications in the oxides properties, such as reduction of the particle size, increase of surface area and partial reduction of Mn4+ to Mn3+ for the Mn(IV) oxides, or of Mn3+ to Mn2+ for Mn2O3, because of favored interactions of the organic molecules with the lattice planes with higher d spacing. Oxygen evolution reaction (OER) tests showed the superior catalytic activity of the treated Mn(IV) oxides, for instance α,γ-MnO2-en presented TOF five times higher than pure α,γ-MnO2. The increase in surface area as well as the higher Mn3+ content caused by the treatment of the Mn(IV) oxides were correlated with the improvement in the OER catalytic activity.  相似文献   
84.
Concerning the problem that the Neural Network speech enhancement algorithm cannot fully represent the nonlinear structure of speech due to feature selection,which leads to speech distortion.This paper proposes the combination of dynamic features with a new mask to optimize neural network speech enhancement.First,three features of noisy speech are extracted and spliced to obtain static features.Then,the first and second difference derivatives are obtained to capture the instantaneous signals of speech and fuse them into dynamic features.The combination of dynamic and static features completes internal complementarity of features and reduced speech distortion.Second,in order to enhance the intelligibility and clarity of speech at the same time,an adaptive mask is proposed,which can adjust the energy ratio of speech and noise as well as the ratio of the traditional mask and the square root mask.The Gammatone channel weight is used to modify the mask value in each channel to simulate the human auditory system and further improve the speech intelligibility.Finally,the simulation of multiple voices under different noise backgrounds shows that compared with different literature algorithms,the algorithm has a higher SNR,subjective speech quality and short-term objective intelligibility,which verifies the effectiveness of the algorithm.  相似文献   
85.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
86.
以方竹笋中提取的膳食纤维为研究对象,采用动态高压微射流(dynamic high-pressure micro-fluidization, DHPM)在不同压力条件(0,50,100,150,200 MPa)下进行处理,探究其对竹笋膳食纤维(bamboo shoots dietary fiber, BSDF)理化和结构特性的影响。结果表明,随着处理压力的增大,BSDF粒径先增大后减小,当处理压力为150 MPa时,粒径最小,为(370±11) nm,此条件下BSDF的持水力、持油力和膨胀力达到最大,较对照组分别提高了47.74%,50.54%,61.27%,且差异显著(P<0.05)。红外光谱分析表明DHPM处理不会改变BSDF的官能团,但会使BSDF内部的部分氢键断裂和半纤维素、木质素等发生降解;X射线衍射和热重分析表明DHPM处理不会引起BSDF的晶体结构改变,但晶体有序度会下降,进而导致其热稳定性降低;微观结构分析显示DHPM处理会使BSDF颗粒尺寸减小、表面粗糙、组织松散,且当处理压力为200 MPa时,颗粒发生团聚。综上,DHPM可以有效改善BSDF的理化性质,在膳食纤维改性方面具有一定的应用价值。  相似文献   
87.
Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled-data dependence. The extracted knowledge ultimately serves to a decision-making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black-box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high-dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto-regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data-independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential.  相似文献   
88.
The electrochemical water splitting to produce H2 in high efficiency with earth-abundant-metal catalysts remains a challenge. Here, we describe a simple “cyclic voltammetry + ageing” protocol at room temperature to activate Ni electrode (AC-Ni/NF) for hydrogen evolution reaction (HER), by which Ni/Ni(OH)2 heterostructure is formed at the surface. In situ Raman spectroscopy reveals the gradual growth of Ni/Ni(OH)2 heterostructure during the first 30 min of the aging treatment and combined with polarization measurements, it suggests a positive relation between the Ni/Ni(OH)2 amount and HER performance of the electrode. The obtained AC-Ni/NF catalyst, with plentiful Ni–Ni(OH)2 interfaces, exhibits remarkable performance towards HER, with the low overpotential of only 30 mV at a H2-evolving current density of 10 mA/cm2 and 153 mV at 100 mA/cm2, as well as a small Tafel slope of 46.8 mV/dec in 1 M KOH electrolyte at ambient temperature. The excellent HER performance of the AC-Ni/NF could be maintained for at least 24 h without obvious decay. Ex situ experiments and in situ electrochemical-Raman spectroscopy along with density functional theory (DFT) calculations reveal that Ni/Ni(OH)2 heterostructure, although partially reduced, can still persist during HER catalysis and it is the Ni–Ni(OH)2 interface reducing the energy barrier of H1 adsorption thus promoting the HER performance.  相似文献   
89.
Transition metal-based heterostructure materials are considered as promising alternatives to state-of-the-art noble metal-based catalysts toward the oxygen evolution reaction (OER). Herein, for the first time, a simple interface engineering strategy is presented to synthesize efficient electrocatalysts based on a novel CoFe2O4/β-Ni(OH)2 heterogeneous structure for the electrochemical OER. Remarkably, the optimized CoFe2O4/β-Ni(OH)2 electrocatalyst, benefiting from its hierarchical hexagonal heterostructure with strong electronic interaction, enhanced intrinsic activity, and electrochemically active sites, exhibits outstanding OER electrocatalytic performance with a low overpotential of 278 mV to reach a current density of 10 mA cm−2, a small Tafel slope of 67 mV dec−1, and long-standing durability for 30 h. Its exceptional OER performance makes the CoFe2O4/β-Ni(OH)2 heterostructure a prospective candidate for water oxidation in alkaline solution. The proposed interface engineering provides new insights into the fabrication of high-performance electrocatalysts for energy-related applications.  相似文献   
90.
Benzothiophene (BT) is a key sulfur-containing intermediate product in the thermal conversion process of coal and heavy oil. The migration process of the sulfur element may affect the thermal utilization design of BT. In this paper, BT was used as a model compound to simulate the supercritical water gasification (SCWG) process by molecular dynamics with a reactive force field (ReaxFF) method, and the laws of hydrogen production and sulfur migration mechanisms were obtained. Increasing the molecule number of supercritical water (SCW) and increasing the reaction temperature can enhance the generation of hydrogen and promote the conversion of organic sulfur to inorganic sulfur. Water was the main source of H2, and H2S was the main gaseous sulfur-containing product. SCW had a certain degree of oxidation due to a large number of hydroxyl radicals, which could increase the valence of sulfur. The conversion process of BT in SCW was mainly divided into four stages, including thiophene ring-opening; sulfur separation or carbon chain broke with sulfur retention; carbon chain cleaved, and gas generation. The lumped kinetic parameters of the conversion of sulfur in BT to inorganic sulfur were calculated, and the activation energy was 369.98 kJ/mol, which was much lower than those under pyrolysis conditions. This article aims to clarify the synergistic characteristics of hydrogen production and sulfur migration in the SCWG process of BT from the molecular perspective, which is expected to provide a theoretical basis for pollutant directional removal during hydrogen production by sulfur-containing organic matters in SCW.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号